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ABSTRACT 

The  B u s e m a n n - P e t t y  problem asks whe t he r  convex or ig in -symmet r ic  

bodies in IR n wi th  smal ler  central  hyperp lane  sect ions necessari ly have  

smal ler  n -d imens ionM volume.  It  is known t h a t  the  answer  is aff i rmative 

if n ~ 4 and  negat ive  if n > 5. In th is  article we replace the  a s s u m p t i o n s  

of the  original B u s e m a n n - P e t t y  problem by cer ta in  condi t ions  on the  

volumes  of central  hyperp lane  sect ions so t ha t  t he  answer  becomes  

affirmative in all d imensions .  

1. I n t r o d u c t i o n  

The classical Minkowski's uniqueness theorem states that  an origin-symmetric 

star body in ll( n is uniquely determined by the volumes of its central hyper- 

plane sections in all directions; see, for example, [K5, Corollary 3.9]. This 

result provides a strong intuition towards an affirmative answer in the following 

Busemann-Pet ty  problem [BP]: given two convex origin-symmetric bodies K 

and L in N n such that  

vo ln - l (K  N H)  < VOln-l(L N H)  

for every central hyperplane H in •n, does it follow that  

voln(K) _< voln(L)? 
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The solution was completed a few years ago and appeared as the result of work 

of many mathematicians (see [GKS], [Zh] or [Kh, Chapter  5] for the solution and 

historical details). Surprisingly, the answer is affirmative only if the dimension 

n < 4, and it is negative if n > 5. In view of this answer, it is natural to 

ask what information about  the volumes of central hyperplane sections of two 

bodies does allow one to compare the volumes of these bodies in all dimensions. 

Our main result suggests an answer to this question. 

For an origin-symmetric convex body K in •n, consider the section function 

S K(~ )  = v o l n - l ( g N ~ •  ~ C S n - l ,  

where ~J- is the central hyperplane in R n orthogonal to ~. We extend SK from 

the sphere to the whole R n as a homogeneous function of degree - 1 .  Our goal 

is to find a condition in terms of the section functions of two bodies only that  

allows one to compare the n-dimensional volumes of these bodies. We prove in 

this paper  that ,  for two origin-symmetric smooth bodies K, L in R n and c~ E ]~, 

_> n - 4, the inequalities 

(1) (--A)a/2SK(~) ~_< ( - - A ) a / 2 S L ( ~ ) ,  V~ e S n-1  

imply tha t  voln(K) <_ voln(L), while for a < n - 4 this is not necessarily true. 

Here A is the Laplace operator  on R n, and the fractional powers of the Laplacian 

are defined by 

( _ A ) a / 2 f  __ 1 x a ^ x ^ 

where the Fourier t ransform is considered in the sense of distributions, and [x[2 

stands for the Euclidean norm in R n. Of course, if a is an even integer and f 

is an even distribution, we get the Laplacian applied a / 2  times. The fact that  

both  sides of (1) represent continuous functions of the variable ~ follows from 

[Kh, Lemma 3.16]. 

This result means that  one has to differentiate the section functions at least 

n - 4 times in order to compare the n-dimensional volumes. The case a = 0 

corresponds to the original Busemann-Pe t ty  problem, so our result can also be 

considered as a "continuous" generalization of the problem. Other generaliza- 

tions of the Busemann-Pe t ty  problem and related open questions can be found 

in [BZ], [K2], [g3], [K4], [MP], [RZ], [Y], [Zv]. 

Let us briefly outline the idea of the proof. As shown in [K1], the section 

function can be expressed in terms of the Fourier transform, as follows: 

1 (2) SK( ) - -  - -  
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so the condition (1) can be written as 

(3) (Ixl~HXllKn+l) A ~ (IXI(~IIX]]Kn+I) A. 

Now let us write the volume in polar coordinates and use a spherical version of 

Parseval's formula from [K2], which allows one to remove the Fourier transforms 

of homogeneous functions in the integrals over the sphere under the condition 

that  the degrees of homogeneity of these functions add up to - n :  

- ,(Ixl; llxll l)"( )(Ixl llxll n+l)"( )d " 

Suppose that  the distribution Ixl;~llzll~ 1 is positive definite, so its Fourier 

transform is non-negative. Then the latter equality combined with (3) implies 

that  

nvo ln (K)  < f s - - '  IIxll~:'llxllF+ldx' 

and applying Hhlder's inequality to the right-hand side we get that  voln(K) < 

vol,~(L). On the other hand, if Ixl~'~HXllg 1 is not positive definite one can con- 

struct a counterexample using a more or less standard perturbat ion procedure. 

Thus, the problem is essentially reduced to the question, for which a is the dis- 

tribution I xl~ a ]]Xllg 1 positive definite, for every origin-symmetric convex body 

K in R n. Note that  for a = 0 this happens only if the dimension n < 4, as 

proved in [GKS]. We prove that  this function is positive definite for a >_ n - 4 

and any symmetric convex body K in ~n by an argument modifying the proof 

from [GKS]. If a < n - 4 we construct examples of bodies for which this dis- 

tribution is not positive definite. The latter requires a substantial technical 

effort. 

2. P o s i t i v e  de f in i t e  d i s t r i b u t i o n s  o f  t h e  f o r m  Ixl2rHXlIK s 

Let K be a convex origin-symmetric body in 1~ n. Our definition of a convex 

body assumes that  the origin is an interior point of K.  The r a d i a l  f u n c t i o n  

of K is given by 

pK(x)  = max{a P O : ax E K } ,  x E ~ n \ { 0 } .  

The Minkowski norm of K is defined as 

IlxltK = m i n { a  _> 0 : x  E aK}; 
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clearly pK(X) = IixiiK 1. 
Writing the volume of K in polar coordinates, one can express the volume in 

terms of the Minkowski norm: 

(4) voln ( K ) - -  -nl f s~- i  IlOIIKndO" 

We say that  a body K is infinitely smooth if its radial function PK restricted to 
the unit sphere S n - 1  belongs to the space C~(S  n-l) of infinitely differentiable 

functions on the unit sphere. Note that  a simple approximation argument re- 

duces the original Busemann-Petty problem (as well as all generalizations men- 

tioned in the introduction) to the case where the bodies K and L are infinitely 

smooth. 

Throughout the paper we use the Fourier transform of distributions. The 

Fourier transform of a distribution f is defined by (], r = (f, ~) for every test 

function r from the Schwartz space S of rapidly decreasing infinitely differen- 

tiable functions on ~n. For any even distribution f ,  we have (f)^ -- (27r)nf. 

A distribution is pos i t ive  def in i t e  if its Fourier transform is a positive dis- 

tribution in the sense that  (f,  r >_ 0 for every non-negative test function 4; see, 

for example, [GV, p. 152]. 

Let f be an integrable continuous function on R, m-times continuously dif- 

ferentiable in some neighborhood of zero, m C N. For a number q C (m - 1, m) 

the f r ac t iona l  der iva t ive  of the order q of the function f at zero is defined by 

oo t in--1  
1 (f(t) - f(O) - tf'(O) - . .  (~a---i)! f(m-1)(O)) dt" f(q)(Ol-- F(_q) f ~ t -1-q 

Note that  without dividing by F( -q)  the expression for the fractional deriva- 

tive represents an analytic function in the domain {q E C , - 1  < Req < m} not 

including integers and has simple poles at non-negative integers. The function 

F( -q )  is analytic in the same domain and also has simple poles at non-negative 

integers. Therefore, after division we get an analytic function in the whole 

domain {q C C , - 1  < Req < m}, which also defines fractional derivatives of 

integer orders. Moreover, computing the limit as q --~ k, where k is a non- 

negative integer and k < m, we see that  the fractional derivatives of integer 

orders coincide with usual derivatives up to a sign: 

d k 
f(k) (0) = (-- 1) k-d-~f(t)lt=0. 

More details on fractional derivatives may be found in [K5, Section 2.6]. 
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For ~ E S n- l ,  consider a function AK,r on R, 

=/K [xl~Pdx' AK,r o(x,~)=t 

195 

where p < n - 1. 

In this section we establish some regularity properties of the function AK,~,p 

and express its fractional derivatives in terms of the Fourier transform. We 

assume that  K is an infinitely smooth body. 

For a real number q define the ceiling function [q], which gives the smallest 

integer greater than or equal to q. 

LEMMA 2.1: Let ~ E S n- l ,  k E N, 0 < p < n - k - 1. Then the function 

Ag,~,p is k-times continuously differentiable (uniformly with respect to ~) in 

some neighborhood of zero. 

For fixed q E C, the fractional derivative A~!c,p(0 ) , o  is a continuous function 

of the variable ~ E S n- i ,  and, for fixed ~ E S n- l ,  it is an analytic function of 

q in the domain {q E C: - 1 < [Req] < n - p  - 1}, with convergence in the 

derivatives by q being uniform with respect to ~. 

The proof is similar to that  of [K5, Lemma 2.4]. The only difference is tha t  

in our case the function is differentiable only up to a certain order. To explain 

this, write the function in the form 

r n - 2 ( r  2 q- AK,~,p(t) ~- ~s~_2 ( ~ pKnHt(O) t2)-p/2dr)dO, 
where PKnHt (0) is the radial function of the body K ;3 Ht and S~ -2 is the unit 

sphere in Ht = {x E Rn: (x, ~) = t}. If we differentiate by t too many times the 

integral stops being convergent when t = 0, which is why we have restrictions 

on k and q. 

The following Lemma is a generalization of Theorem 2 from [GKS]. 

LEMMA 2.2: Let K be an infinitely smooth origin-symmetric convex body in 

R n , q > - l , q ? ~ n - p - 1  a n d O < p < n -  [ q ] - l .  T h e n f o r e v e r y ~ E S  n- l ,  

cos(Trq/2) 
AK,r I ~= T r ( n _ p _ q _  l) (llxll~n+p+q +1 . Ixl;P)A( ). 

Proo~ We simply write [[.  [I for II" IlK- By IN5, Lemma 3.16], 

(]]xll -n+p+q+l �9 [xi~P) ̂  is a continuous function on ~n \ {0}. 

Suppose first that  - 1  < q < 0. The function 

= /K [x'2Pdx-- ~(x X([[x[[)[x[2Pdx AK,~,p(t) n(x,~)=t ,~)=t 
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is even. Applying Fubini 's  t heorem and passing to  spherical  coordinates,  we get 

, r ( - q )  ' ' 

/? _ 1 itl_q_lAK,~,p(t)dt 
2 r ( - q )  

f: L - ~o Itl-q-' ,e>=t ~(llxN)lxl~'dxdt 

- 2 r ( - q )  ~ I(z'~)l-q-lx(llxll)ixl~Pdz 
_ i f s - - ,  ](0' ~ ) l -q -1  fo ~r-q-lx(rllOII)r-prn-ldrdO 2r(-q) 

1 f s  rn-P-q-2drdO -- 2 F ( - q )  .,-1 I(O'~)]--q--1 JOfUIlOII 

= 2 r ( - q ) ( n  - p  - q - 1) . - ~  I(~176176 

N o w  we extend (q) •n AK,~,p(O ) to  as a homogeneous  function of ~ of degree 

- 1  - q. Then  for every even tes t  function r E S,  

1 
' (")  ' ' i A K : r 1 6 2  

x ~,_ llOll-n+'+q+i ~= l(O,5)l-q-lc~(5)dSdO. 

Using L e m m a  5 f rom [GKS] 

- 1  

a r ( - q ) r ( 1  + q ) (n  - p - q - 1) s in(q;r /2)  

x ~._l llOll-'~+P+a+l f_~ ltlr 
= - s in ( - ; rq )  ((1 xll_n+p+q+l, ix t ;~ )^ (5)  ' r 

2 r ( n  - p - q - 1) sin(q~r/2) 

The  la t ter  follows f rom the fact t ha t  r ( - q ) r ( q  + 1) = -Tr/sin(qTr) and the  

calculat ion 

(([[xll-n+P+q+l" Ix12P)^(5)' r --.L Ilxll-n+P+q+~" Ixl;Pr 

= f s - - '  II~247 

x t-n+P+q+lt-Pt~-lr 
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/o = ilO] [-n+p+q+l tq~(tO)dtdO. 
n - - 1  

We have proved tha t  

(A(q) . cos(zrq/2) 
K'('P(O)' r ---- 7r(n + p -- q -- 1) ((Hx][-n-bp+q-kl" {x[2P)A(~), (~(~)) 

for --1 < q < 0. Since bo th  A(~!~,p(O) and (llxll -n+p+q+l.  ]X{~P)A(~) are 

continuous functions of ~ C ]I( n \ {0}, we get the  s t a t emen t  of the  L e m m a  for 

- l < q < 0 .  

To prove the L e m m a  for o ther  values of q, we use the  fact t ha t  for every even 

test  function r the  functions 

and 

q ~ (A(~lr r 

cos( q/2) <(llxll-n+p+q+i" 
q H  7 r ( n - p - q - 1 )  

are analyt ic  in the  domain  {q C C: - 1 < [Req] < n - p - l } .  (The fact, 

t ha t  (llxll -n+p+q+l. Ixl2P)A(~) is analyt ic  wi th  respect  to  q, can be seen from 

the a rgument  of [K5, L e m m a  2.22].) The  result  of the L e m m a  follows, since 

these analyt ic  functions coincide for q E ( - 1 ,  0), r is a rb i t r a ry  and,  by L e m m a  

2.1, the  fractional derivat ive is a continuous funct ion of ~ outside of  the  origin. 
| 

LEMMA 2.3: Let  K be an origin-symmetric convex body in N n. Assume  that 
q C ( - 1 , 2 ]  and 0 < p < n - [q] - 1. Then HXlIK n+p'~q']-l. [X[2 p is a posit ive 
definite distribution on ]~n. 

Proof" First  we prove t ha t  

(5) Ag,~,p(t) < Ag,~,p(O), for all t _> O. 

If  p = 0, it follows f rom Brunn ' s  t heo rem (see [K5, T h e o r e m  2.3]) t ha t  the  

central  hyperplane  section of an or ig in-symmetr ic  convex body  has max imal  

volume among  all hyperp lane  sections or thogonal  to  a given direction. If  p > 0 

one can see tha t  

Ix]2 p = p- - [~  X(z]xl2)zp-l  dz, 
Jo 
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f K  Ixl2Pdx AK,r -- n(:~,O=t 

x( zlxt2 )zP- l azdx 
= P n(x,O=t 

= p z p-1 X(zlxl2)dxdz 
n(x,~)=t 

= p z p-1 dxdz  
1/ ,nK n(x,() =t 

< p z p-1 dxdz  = AK,~,p(O) 
1/ ,n t f  n(x,O=o 

by Brunn's theorem applied to the convex origin-symmetric body B1/~ A K ,  

where Bl / z  is a bail of radius 1/z.  

Now consider q E (1, 2). Here cos(qTr/2) is negative, therefore we need to prove 

that  A(~l~,p(O ) < O. Using inequality (5), the formula for fractional derivatives 

for q E (1,2) and the fact that  A'(O) = 0 we get 

A (q) IO) = 1 t - q - l ( A ( t )  - A(O) - tA'(O))dt 
K,~,p~ r(-q) 

_ 1 t -q -~(A( t )  - A(O))dt < O, 
r(-q) - 

since r(-q) is positive. 

If q e (0,1), then cos(q~r/2) is positive and 

(a) 1 t - q - l ( A ( t )  - A(O))dt > O, A~,r r(-q) 

since F ( - q )  < 0 for these values of q. 

Finally, if q E ( -1 ,  0) then cos(qTr/2) is positive, F ( - q )  is also positive and 

/J (q) 1 t - q - l  A( t )d t  > O. A~,r  r(-q) 

We still have to prove the Lemma for q = 0,1,2.  

When q = O, cos(uq/2) = 1 and 

A(~!r = (-1)~162 >__ O. 

When q = 2, cos(Trq/2) = - 1  and 

(2) 2 . AK,r ) = ( -1 )  AK,r ) < O, 
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since Ag,~,p(t) has maximum at 0. 

When q = 1, take small e > 0. By what we have just proved for non-integer 

q, for any non-negative test function r 

((IxI~PlIxlI~n+P+2+~) ~, r >_ o. 

Since [IXIIK < Clx[2 for some C, it follows that  

II~ll~n+p+~+~lxl~ ~ < ~ I x l F  +~+~ < ~lxl~ "+~, 

the latter being a locally-integrable function on ]R n. 

Set g(x) = Clxl~n+llr for Ix[2 < 1 and g(x) = CIq~(x)[ for Ix[2 > 1. The 
function g(x) is integrable on 1~ ~ and for small E we have that  

Therefore, by the Lebesgue dominated convergence theorem, 

((IIxlI~n+P+~IxljP) ,̂r = f Ilxll~"+P+21xl;Pr 
JR n 

= lim/[IIXlI--nWp+2+e X --p'~A = lira f IlXllKn+P+2+*lxl2Pr ,__,o\Ul IlK 2 ) ' r  > 0. II 
~----*0 JR~ 

3. T h e  p r o o f  of  t h e  m a i n  resul t  

THEOREM 3.1: Let c~ E [n - 4 , n  - 1), K and L be origin-symmetric infiniteIy 
smooth convex bodies in •n, n >_ 4, so that for every ~ E S n- l ,  

(--A)"/2SK(~) < (--A)"/2SL(~). (6) 

Then 

voln(K) < voln(L). 

On the other hand, for any a C [n-5,  n - 4 )  there are convex origin-symmetric 

bodies K , L  C ]~n, n >_ 5 that satisfy (6) for every ~ E S n-1 but voln(L) < 
vol~(K). 

Proof of the affirmative part: Let SK(~) = voln_,(K KI ~• ~ E S n-*, the 

central section function defined in the Introduction. Then, as proved in [K1], 

1 
(7) SK(~) -- w(n -- 1) (]]xll~:~+l)^(~)" 
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Extending SK(~) to R n as a homogeneous function of degree - 1  and using 

the definition of fractional powers of the Laplacian we get 

1 
( - - A ) < ~ I 2 S L ( O )  - -  7 r ( n  - 1) (Ix17 IlxllZ:+~)^(o), 

therefore 

(2~r)" .L-, Ilxll~llxllEn+Xdx 
= (2~r) n ~,,_ (Ixl~-'~llxll~)(lxl~llxNZ'~+l)dx 
= L,,_ (IxlT-'~ Ilxll~-l)^(O)(IxlT'llxllT/'+l)^(0)d0 
= ~(n - 1)/s,~-, (Ixl~-~ II~ll~)^(0)(-A)'~/28~'(e)de" 

Here we have used Parseval 's formula on the sphere (see [K2, Lemma 3]) 

and (7). 

By Lemma 2.3 with p -- a and q = n - a  -2 ,  (Ixl2ailXllK1) ̂  is a non-negative 

function on S n-l,  therefore using the condition of the theorem and repeating 

the above calculation in the opposite order, we get 

Ln--1 IIXlIKIlIxHKn+ldx ~-- j~n--I [[XlIKIlIxlILn+ldx" 

Then by H51der's inequality and the polar formula for the volume (4), 

\ l l n  (~-l)ln 
nvoln(K)<_ (i~n_l HON~dO) (~n--1 "OilLndO) 

= n(voln(K))lln(voln(L))( n-1)/n, 

which yields the s tatement  of the positive part  of the theorem. 

Proo/ '  of  the negative part: Let a C [n - 5, n - 4). We need to construct two 

convex origin-symmetric bodies K,  L C R n, n > 5 such that  for every ~ E S n-1 

but 

(-A)~I~sK(~) <_ (-A)"I~sL(O, 

voln(L) < voln(K). 

First let us prove the following Lemma. 
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LEMMA 3.2: Let  ~ E [n - 5, n - 4). There exists an infinitely smooth  origin- 

symmetr ic  convex body  L with positive curvature, so that  

I I x l I Z  . 

is not  a positive definite distribution. 

Proo~ Fi r s t  assume t h a t  c~ C (n - 5, n - 4). P u t  q = n - a - 2, so q E (2, 3). 

Our  goal  is to  cons t ruc t  a b o d y  L so t h a t  there  is a ~ C S n-1 sat is fying 

(8) ~o~176 t - q - l  (AL,~,~(t) - AL,~,~(O) -- A'~, ~ (0)--t~) dt < O. 

If  we cons t ruc t  such a body  L, the  resul t  of this  l emma  i m m e d i a t e l y  follows 

from L e m m a  2.2 and the  defini t ion of f rac t ional  derivat ives.  

Consider  the  funct ion 

f ( t )  = (1 - t 2 - Nt4)  1/(~-~-1).  

L e t  a N  be the  posi t ive  real  root  of the  equa t ion  f ( t )  = O. Define the  b o d y  

L C R n as follows: 

L =  ( x l , . . . , x n )  E N ~ : x n C [ - - a g , a g ] a n d  ~i~_lX_ < f ( x ~ )  , 

which is a s t r ic t ly  convex ilffinitely different iable  body.  

Take ~ to  be the  uni t  vector  in the  d i rec t ion  of the  xn-axis .  Then  for t E 

[0, aN], 

ff( 
t) 

= C n  ( t  2 n u r 2 ) - c ~ / 2 r n - 2 d r ,  

J o  

where Cn --  [ S ~ - l h  and  for t > aN we have Ai,~,a( t )  =- O. 

One can compu te  

AL,r -- n -- a -- 1 

and 

n - a  3 + - n - a - 1  

In order  to  e s t ima te  the  in tegra l  (8), we spl i t  i t  in to  th ree  par t s :  over 

[0, bN], [bN, aN] and [aN, Cx)), where  bn is the  posi t ive  real  roo t  of the  equa t ion  

1 - t 2 - N t  4 = t q + l .  Recal l  t h a t  aN was defined as the  posi t ive  real  roo t  of the  
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equat ion 1 -- t 2 -- N t  4 = O. I t  is easy to  check tha t  aN ~-- bN ~ N -1/4 for large 

N .  Also, note  t ha t  on [0, aN] we have f ( t )  > O, and f ( t )  > t if and only if 

t e [0, bN]. 
First  consider the interval [0, bN]. For all t f rom this interval we have t < f ( t ) .  

Then  we can break  the  integral  

of(t)(t 2 + r2)-a/2rn-2dr -- 11 + I2 

into two par ts ,  where the  first one can be es t imated  as follows: 

fOt ~ t  tn-c~- I I1 = (t 2 + r2)-a/2rn-2dr < (r2)-a/2rn-2dr - 
- n - a - l '  

and for the second one we will use the inequality 

(1 + x) -'~ < 1 - "/x + 7(')' + 1) - 2 x 2, f o r ' y > 0 a n d 0 < x < l .  

T h e n  

ff( 
t) 

/2 = (t 2 + r2)-a/2rn-2dr 
Jt 

_ f I ( t ) ( l + t _ ~ ) - a / 2 r n - a - 2 d r  
--Jr 

f f ( t )  ( a t 2  ~(~  + 1 ) t  4 ) 
--Jr < 1 - - ~ +  2 f i  r " -~ -2dr  

_ [  r " -~-1  a t 2 r  n -a-3  g(ga ~ + l )  ta r  n-a-5] l ( t )  

n Z g T 1  2 n -  a -  3 + 2 n - - - - ~ = g  t 
f n - a - l ( t )  OZ t 2 

n -- a -- 1 2 n -- a -- 3 f " - a - a 4 j  :~  

2 n - - a - -  5 f~-~-5" t"  ( )  
c t n - a - 1  + 

-n-a-l<fn-~-~(t) a 2 n _ a _ t 2  3 f f - ~ - 3 ( t )  + C t ~ - a - ~  

_ 1 - t 2 - N t  4 a t 2 4 . . . .  a c tn_~_  1 
2 n _ a _ 3 ( 1 - t 2 - N t  ) . . . .  1 + n - a - 1  

for some constant  C. T h e  last inequali ty follows from f ( t )  >_ 0 on [0, bN] and 

a E ( n -  5, n -  4). 

Using the  inequali ty 

( l - x )  ~ > l - ' ~ x ( 1 - x )  ~-1,  f o r 0 < 3 , < l a n d 0 < x < l ,  
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appl ied  to  the  second t e r m  in the  previous  expression,  we get  

1 - t 2 - N t  4 a t 2 
12<_ x 

n - a - 1  2 n - a - 3  
(  _o-3 . . . .  /) 

. . . . .  Nta)~_-=-~-~_~-t(t2 + N t  4 + x 1 (1 t 2 C t  n - a - 1  
n a - 1  

1 - t 2 - N t  a a t 2 t 4 + N t  6 
-- -k- C1 -t- C t  n - a - 1  �9 

n -  a - 1 2 n -  a -  3 ( 1  - t 2 - N t  a ) , * - ] - I  

Now using the  es t ima tes  for 11 and 12 we ge t  

- A "  0 t2 f o b N t - - q - - l ( A L , ~ , a ( t )  AL,~ ,a(O)- -  L,r ) ~ ) d t  

0 bN ~ 1 [ 1 -- t 2 -- N t  4 a t 2 

+ C t  n - a - 1  

t 4 + N t  6 
+ C1 2 

2 n -  a - 3 (1 - t 2 - N t  4) . . . .  1 

1 [ a 2 ] t 2 )  
n - a - 1  + + - dt  n - a - 3  n - a - 1  

~0 bN ( - N t 4  ta + N t  6 ) 
=Cn t - q - 1  - - - -  A- C1 ~- C t  n - a - 1  dt. 

n - a - 1 (1 - t 2 - N t  4) n--~--i 

Now one can e s t ima te  each t e r m  of the  last  in tegra l  separate ly .  Since bN ~- 

N -1 /4 ,  we get  t ha t  

~0 bN - N t  4 
t - a - 1  dt  ~- - C 2 N  q/4 

n - a - 1  

for a posi t ive  cons tan t  C2. 

For the  second te rm,  we change the  var iable  of in tegra t ion:  u = N 1 / a t .  Then  

~0 bN t--q--1 
t 4 -]- N t  6 

2 dt 
( 1  - t 2 - g t  4) . . . .  , 

bNN1/4 l "  
= Nq/4  ] u - q - 1  

# 

JO 

bNN1/a 
N (q-2)/4 / u - q - 1  

do 

< C3 N(q-2) /4 ,  

u 4 N  -1  4- u 6 N  -1 /2  
2 du 

(1 - N - 1 / 2 u 2  - u 4)  . . . .  a 

u 4 ~- u 6 

(1 - N - 1 / 2 u 2  - u 4) n--2--1 
d u  

since b N N  1/4 -*  1 as N -~ oc, and  the  in tegral  

~0 
1 U 4 ~c U 6 

u - q - 1  (1 - u 4) ~ - L ~  du 
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converges both at 0 and 1. 

And finally, the integral of the last term is small for large values of N, since 

n -  a - 1 = q + 1. From what we have obtained one can see that  the integral over 

[0, bN] will be negative for large values of N since the leading term is -C2N q/4. 
Now consider the integral over [bN, aN]. The expression 

AL,r - AL,r - A'~,r /2 

can be estimated from above by a constant C, not depending on N. Indeed, 

AL,~,a(t) < AL,~,a(O), A'~,~,a(O) is a constant independent of N,  and 

t < aN ~-- g -1/4 _< 1 for N large enough. Therefore 

aN 

- , , - A ' ~ , e , a ( O  ) -  dt LN t-q-l(Ag"'~(t) ALr t:) 

5 C f~ 5 C [:N(bN)-q-ldt=O~bN)-qb+~. 
J b N  J b N  

Recalling that  aN and bN satisfy the equations 

1--a2g-- Na4g=O and 1 - b  2 -  yb4N =b q+l, 

we conclude that  

b~ +1 = (a 2 - b2)(1 + N(a 2 + b2N)). 

Therefore 

LaN C 
6" t-q-ldt < (aN + bN)(1 + N(a} + b~)) ~- CN-1/4" 

N 

Finally, the integral over [aN, c~) can be computed as follows: 

l" r A" t2 1 t-q-lt- - INOl 4 + D2N(q-2)/4 
J a N  

where D1 > 0. Therefore, this integral is negative for N large enough. 

Combining all the integrals one can see that  for N large enough the desired 

integral (8) is negative. This means that  for some direction ~ E S n-1 the 

function (IIzlIZ is negative, if a E (n - 5 ,n  - 4). 

If a = n - 5, both sides of the equality in the statement of Lemma 2.2 vanish, 

therefore we need to apply the argument from [GKS] (see the proof of Theorem 

1). Then 

(HXHL 1- [xi2n+5)^(~) = C L~176 t-4 (AL,~,a(t) - AL,~,a(O) -- A'~,r ~ )dt 
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for a positive constant C. Considering the same body as before, we get that  

([IXllL 1. Ixl~-n+5)^(~) is also negative at some point ~. | 

Now we are ready to finish the proof of the negative part. Apply Lemma 

3.2 to construct an infinitely smooth origin-symmetric body L with positive 

curvature for which (I[xIIZ 1 �9 I x l ~ ) ^ ( ~ )  < 0 for some direction ~. By Lemma 

2.2, the function ([IXllL 1" Ixlff~) ̂  is continuous on the sphere S n - l ,  hence there 

is a neighborhood of ~ where it is negative. 

Let 

a = {0 c s ~ - l :  (llxll~ 1. Ix l~ )^ (0 )  < 0}. 

Choose a non-positive infinitely differentiable even function v supported on 

fL Extend v to a homogeneous function r-a-Iv(O) of degree - a  - 1 on N n. 

By [K5, Lemma 3.16], the Fourier transform of ]xl2a-lv(x/Ixl2) is equal to 

Ixl2n+a+lg(x/Ixl2) for some infinitely differentiable function g on S n-1. 
Define a body K by 

IIxll~ ~+1 = I1~11; n+~ + ~ l x l ~ + l  g(x/lxl2) 

for some small ~ so that the body K is convex (see, for example, [K5, 

p. 96] for this standard perturbation argument). Multiply both sides by 
1 ~(n-1) Ix]~ and apply the Fourier transform: 

~(2~)" 
(-A)~/2S~ = (-A)"/~SL + ~-~--i)IxlT~-lv(x/Ixl~) < (-A)~/2SL' 

since v is non-positive. 

On the other hand, 

j~S,~_ 1 (IIXl]L 1" Ixl2a)A(O)(-A)a/2SKdO 

= . s  (llxll~l " I~ l ;")^(e ) ( -~)" /~SLde  

(2 . )  ~ f 
e T r ( n -  1) is.-,  (IIxlILI" + Ixl~)^(O)v(O)dO 

> fs,~_~ (I]X[IL 1" IxI2'~)A(o)(--A)c~/2SLdO. 

Repeating the argument from the proof of the affirmative part we get 

voln(L) < voln(K). | 
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Remarks:  (i) The negative part  is formulated only for q E [ n - 5 , n - 4 ) ,  because 

we wanted this to work for n = 5. In fact, for bigger n one can take q E [0, n - 4 ) .  

Also, the condition (1) can be writ ten in terms of the Fourier transforms so that  

no smoothness of the bodies is required. 

(ii) In the case where q = n -  4 and n is an even integer, the result of Theorem 

3.1 was proved in [K4] using an induction argument. The proof from [K4] cannot 

be extended to other values of q and n and does not produce any results in the 

negative direction. 

(iii) Shephard's  problem (see, for example, [K5, Section 8.4]) asks whether 

convex origin-symmetric bodies with smaller projections necessarily have smaller 

n-dimensional volume. As proved independently by Pet ty  [P] and Schneider [S], 

the answer to this problem is affirmative only in dimension n = 2, so one may 

t ry  to modify Shephard's problem to guarantee the affirmative answer in all 

dimensions. However, a t tempts  to repeat the proof of Theorem 3.1 for Shep- 

hard 's  problem fail, since the section function AK,~,p may not be sufficiently 

differentiable. 
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