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ABSTRACT

The Busemann-Petty problem asks whether convex origin-symmetric
bodies in R™ with smaller central hyperplane sections necessarily have
smaller n-dimensional volume. It is known that the answer is affirmative
if n < 4 and negative if n > 5. In this article we replace the assumptions
of the original Busemann-Petty problem by certain conditions on the
volumes of central hyperplane sections so that the answer becomes
affirmative in all dimensions.

1. Introduction

The classical Minkowski’s uniqueness theorem states that an origin-symmetric
star body in R™ is uniquely determined by the volumes of its central hyper-
plane sections in all directions; see, for example, [K5, Corollary 3.9]. This
result provides a strong intuition towards an affirmative answer in the following
Busemann—Petty problem [BP]: given two convex origin-symmetric bodies K
and L in R™ such that

vol,—1 (KN H) < vol,_{(LNH)
for every central hyperplane H in R", does it follow that

volp, (K) < volp(L)?
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The solution was completed a few years ago and appeared as the result of work
of many mathematicians (see [GKS], {Zh] or [K5, Chapter 5] for the solution and
historical details). Surprisingly, the answer is affirmative only if the dimension
n < 4, and it is negative if n > 5. In view of this answer, it is natural to
ask what information about the volumes of central hyperplane sections of two
bodies does allow one to compare the volumes of these bodies in all dimensions.
Our main result suggests an answer to this question.

For an origin-symmetric convex body K in R", consider the section function

Sk(€) = volp_1 (K NEL), e 8",

where £ is the central hyperplane in R™ orthogonal to £. We extend Sk from
the sphere to the whole R” as a homogeneous function of degree —1. Our goal
is to find a condition in terms of the section functions of two bodies only that
allows one to compare the n-dimensional volumes of these bodies. We prove in
this paper that, for two origin-symmetric smooth bodies K, L in R” and o € R,
« > n — 4, the inequalities

1) (—A)*/2Sk (&) < (—A)/28L(8), VEeS™!

imply that vol,(K) < vol,(L), while for a < n — 4 this is not necessarily true.
Here A is the Laplace operator on R™, and the fractional powers of the Laplacian
are defined by

(~A)/2f = (—2717<|x|sf(x))m

where the Fourier transform is considered in the sense of distributions, and |z|;
stands for the Euclidean norm in R™. Of course, if a is an even integer and f
is an even distribution, we get the Laplacian applied o/2 times. The fact that
both sides of (1) represent continuous functions of the variable £ follows from
[K5, Lemma 3.16].

This result means that one has to differentiate the section functions at least
n — 4 times in order to compare the n-dimensional volumes. The case & = 0
corresponds to the original Busemann—Petty problem, so our result can also be
considered as a “continuous” generalization of the problem. Other generaliza-
tions of the Busemann-Petty problem and related open questions can be found
in [BZ], [K2], [K3], [K4], [MP], [RZ], [Y], [Zv].

Let us briefly outline the idea of the proof. As shown in [K1}, the section
function can be expressed in terms of the Fourier transform, as follows:

1

(2) Sk(§) = m(llmllR"+l)A(€),
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so the condition (1) can be written as
3) (2[5 2l Z™ )" < (23 =l )"

Now let us write the volume in polar coordinates and use a spherical version of
Parseval’s formula from [K2], which allows one to remove the Fourier transforms
of homogeneous functions in the integrals over the sphere under the condition
that the degrees of homogeneity of these functions add up to —n:

mvol(K) = [ alide = [ el el el s

= e [ (el O el llll ) e
Snfl

(2m)"
Suppose that the distribution |z|; "‘HmHI_{l is positive definite, so its Fourier
transform is non-negative. Then the latter equality combined with (3) implies
that

nvoly(K) < / el el de,

Sn—1

and applying Hoélder’s inequality to the right-hand side we get that vol,, (K) <
vol,(L). On the other hand, if |z|;*||z||%" is not positive definite one can con-
struct a counterexample using a more or less standard perturbation procedure.

Thus, the problem is essentially reduced to the question, for which « is the dis-
tribution |z|;*||z|| %" positive definite, for every origin-symmetric convex body
K in R™. Note that for @ = 0 this happens only if the dimension n < 4, as
proved in [GKS]. We prove that this function is positive definite for & > n — 4
and any symmetric convex body K in R by an argument modifying the proof
from [GKS]. If & < n — 4 we construct examples of bodies for which this dis-
tribution is not positive definite. The latter requires a substantial technical
effort.

2. Positive definite distributions of the form |z|;" ||z’

Let K be a convex origin-symmetric body in R". Our definition of a convex
body assumes that the origin is an interior point of K. The radial function
of K is given by

pr(z) =max{a >0:ax € K}, ze€R"\{0}.
The Minkowski norm of K is defined as

[zllx = min{a > 0:z € aK};
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clearly px(z) = |12/
Writing the volume of K in polar coordinates, one can express the volume in
terms of the Minkowski norm:

1
(4) Vol (K) = / 1611 de.
n Sn—l

We say that a body K is infinitely smooth if its radial function pg restricted to
the unit sphere S™~! belongs to the space C°(S™~!) of infinitely differentiable
functions on the unit sphere. Note that a simple approximation argument re-
duces the original Busemann-Petty problem (as well as all generalizations men-
tioned in the introduction) to the case where the bodies K and L are infinitely
smooth.

Throughout the paper we use the Fourier transform of distributions. The
Fourier transform of a distribution f is defined by { 7, o) = {f, qAS) for every test
function ¢ from the Schwartz space & of rapidly decreasing infinitely differen-
tiable functions on R". For any even distribution f, we have ( Hr = (2m)"f.

A distribution is positive definite if its Fourier transform is a positive dis-
tribution in the sense that ( f ,@) > 0 for every non-negative test function ¢; see,
for example, [GV, p. 152].

Let f be an integrable continuous function on R, m-times continuously dif-
ferentiable in some neighborhood of zero, m € N. For a number ¢ € (m — 1, m)
the fractional derivative of the order g of the function f at zero is defined by

£90) = s [ (0 = 1O =t 0) =+ - e £V 0)) .

1)!
Note that without dividing by I'(—q) the expression for the fractional deriva-
tive represents an analytic function in the domain {¢ € C,—1 < Req < m} not
including integers and has simple poles at non-negative integers. The function
I'(—gq) is analytic in the same domain and also has simple poles at non-negative
integers. Therefore, after division we get an analytic function in the whole
domain {gq € C,—1 < Req < m}, which also defines fractional derivatives of
integer orders. Moreover, computing the limit as ¢ — k, where k is a non-
negative integer and k < m, we see that the fractional derivatives of integer
orders coincide with usual derivatives up to a sign:

e

F90) = (~DF 2z le=o.

More details on fractional derivatives may be found in [K5, Section 2.6].
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For £ € S™1, consider a function Ak, on R,

Ak gp(t) = / 2|y Pdz,
Kn{z,t)=t

where p <n — 1.

In this section we establish some regularity properties of the function Ag ¢ ,
and express its fractional derivatives in terms of the Fourier transform. We
assume that K is an infinitely smooth body.

For a real number ¢ define the ceiling function [q], which gives the smallest
integer greater than or equal to q.

LEMMA 2.1: Let £ € "', k€ N,0 < p <n—k—1. Then the function
Ak ¢ p is k-times continuously differentiable (uniformly with respect to §) in
some neighborhood of zero.

For fixed q € C, the fractional derivative Agg’)g’p(O) is a continuous function
of the variable £ € S™™1, and, for fixed £ € S™7!, it is an analytic function of
g in the domain {g € C: —1 < [Req] < n —p — 1}, with convergence in the

derivatives by q being uniform with respect to £.

The proof is similar to that of [K5, Lemma 2.4]. The only difference is that
in our case the function is differentiable only up to a certain order. To explain
this, write the function in the form

pPKNH, (0)
Ak p(t) = /S . ( /O r”_z(r2+t2)‘p/2dr>d8,

t

where pxrg,(0) is the radial function of the body K N H; and St"_2 is the unit
sphere in Hy = {z € R"™: (z,&) = t}. If we differentiate by ¢ too many times the
integral stops being convergent when ¢ = 0, which is why we have restrictions
on k and gq.

The following Lemma is a generalization of Theorem 2 from [GKS].

LEMMA 2.2: Let K be an infinitely smooth origin-symmetric convex body in
R*g¢>~-1,g#n—p—1and0<p<n-—|[q]—1. Then for every £ € S*71,

2) _ _

A9 (o) = cos(mq/ ntptatl | —P\A(g)

Kep(0) W(n_p_q_l)(ﬂwilx lz]57)" ()

Proof: ~ We simply write || - || for || - |[x. By [K5, Lemma 3.16],

(Jz]|~™*Prat .|z, P)N is a continuous function on R™ \ {0}.

Suppose first that —1 < ¢ < 0. The function

Ak gp(t) = / jal5Pde = / x(lel)lel;?de
Kn(z,§)=t (z,£)=t
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is even. Applying Fubini’s theorem and passing to spherical coordinates, we get

1 [® .
AR ,(0) = g /O 7970 Ak p(t)dt

1 1
= —— t|=9 A t)dt
2F(—q)/_ I¢] Kep(t)

1o Y
- 2P(_q)/ Il /zﬁ _ XUalDlaly drdt

—00 §

1 ~ Yy (llzDlz|>Pdx
- /W|<x,e>| x(lel)lel;d

= - —e-t ~ —gq-1 -p,n—1
= (=g Jounr 1O / r= X (r|lo])rPr " drd

- / (6, €)77" / N nr-a24rdp
SV ) T T
2I'(~q) Jgn—1 0
1

- T =T o O Ia T
Now we extend Agg’)&p(o) to R™ as a homogeneous function of £ of degree
—1 — q. Then for every even test function ¢ € S,
1
(-g9)(n—-p-g-1)
< [t [ oo etaded,

Using Lemma 5 from [GKS]

(A (0),6(6)) =57

-1
T AT(—q)T(1 + q)(n — p — g — 1) sin(gn/2)

—n+p+g+l oo qi
x /S e / ER

—o0

B — sin(—mg) —nphat] | =PYA
— e (el 7)), 00

The latter follows from the fact that I'(—¢)I'(¢ + 1) = —n/sin(gr) and the
calculation

(Ul 7P 2] 7)) E), #(6)) =/Rn 2| =P 2]y P () de

_ / acasas
S'n—l

x / gtpratl=pn—l 40y dedp
0
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_ / Misasasis / £9(46) dtdd.
Sn-1 0

We have proved that

(AL 0,80 = D (a0t af; 7)), 0(6)
for -1 < ¢ < 0. Since both Ag??g,p(O) and (||| ~"tPHatl .|z P)N(€) are
continuous functions of £ € R™ \ {0}, we get the statement of the Lemma for
-1<¢g<0.
To prove the Lemma for other values of g, we use the fact that for every even
test function ¢ the functions

g~ (AD, (0),6(8))

and

PR cos(mg/2) Y <(”z“—-n+P+€1+1 . |.’L‘|2_p)/\(§)’ ¢(£))

mn—p—q-
are analytic in the domain {¢ € C: —1 < [Req] < n—p — 1}. (The fact,
that (||z|| " TPT9+1 . |2|;P)*(€) is analytic with respect to ¢, can be seen from
the argument of [K5, Lemma 2.22].) The result of the Lemma follows, since
these analytic functions coincide for ¢ € (—1,0), ¢ is arbitrary and, by Lemma
2.1, the fractional derivative is a continuous function of £ outside of the origin.
|

LEMMA 2.3: Let K be an origin-symmetric convex body in R"™. Assume that
g€ (-1,2] and 0 < p < n—[q] — 1. Then |lz|z" Pt . |2|;7 is a positive
definite distribution on R™.

Proof: First we prove that
(5) Agep(t) < Ak p(0), forallt>0.

If p = 0, it follows from Brunn’s theorem (see [K5, Theorem 2.3]) that the
central hyperplane section of an origin-symmetric convex body has maximal
volume among all hyperplane sections orthogonal to a given direction. If p > 0
one can see that

ol = p / x(zlzl)2~dz,
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therefore

Axep(t) = / 2|5 P da
Kn{z,£)=t

o0
=p/ / x(z|z|2)2P~ dzdzx
Kn{z,£)=t JO
lo o]
=p/ z”‘l/ x(zfxl2)dzdz
0 Kn(z,t)=t
lo o]
p/ z”_l/ dzdz
g Bl/,ﬁKﬁ(:l:,E):_t

o e]
< p/ z”_1/ dzdz = Ak, p(0)
0 By ,OKN(2,6)=0

by Brunn’s theorem applied to the convex origin-symmetric body B;;, N K,
where By, is a ball of radius 1/z.
Now consider ¢ € (1, 2). Here cos(qm/2) is negative, therefore we need to prove

i

that Aﬁgfm(o) < 0. Using inequality (5), the formula for fractional derivatives
for g € (1,2) and the fact that A’(0) = 0 we get

Aﬁ?,)g,p(O) = r(_ilf) fo oot“"“l(A(t) — A(0) ~ tA'(0))dt
1

- /O =91 A(t) — A(0))dt <O,

since I'(—q) is positive.
If g € (0,1), then cos(gr/2) is positive and
0) = L[ t=971(A(t) ~ A(0))dt >0
I'(—gq) Jo -

since ['(—q) < 0 for these values of gq.

(9)
Alg)glp

Finally, if ¢ € (—1,0) then cos(gn/2) is positive, I'(—q) is also positive and

1 s o]
AD. (0 =—-—/ =9 A(8)dt > 0.
10 (0) I'(-q) Jo (t)et 2

We still have to prove the Lemma for ¢ = 0,1,2.
When g = 0, cos(rg/2) =1 and

Agg,)f,p(o) = (-1)%Ak ¢ »(0) > 0.
When g = 2, cos(rg/2) = —1 and

AR, (0) = (~1)%A% ¢ ,(0) <0,
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since Ak ¢ p(t) has maximum at 0.
When ¢ = 1, take small € > 0. By what we have just proved for non-integer
g, for any non-negative test function ¢,

(21" 2] g™ H+4)", ) > 0.
Since ||z||x < C|z|2 for some C, it follows that
2l ™7+ 2]y < Olely ™24 < Claly ™,

the latter being a locally-integrable function on R"™.
Set g(z) = Clz|3 ™| d(z)] for |z|2 < 1 and g(z) = C|¢(z)]| for |z|2 > 1. The
function g(x) is integrable on R™ and for small £ we have that

Izl " P |2l5 () < g(e)-

Therefore, by the Lebesgue dominated convergence theorem,

(2l ™21zl P)" 0) = / Izl ™72l P $(e)de
Rn

. — 2 —p 3 . - 2 -
= lim [ ol ol o) = Tl o) ) 2 0

3. The proof of the main result

THEOREM 3.1: Let a € [n —4,n — 1), K and L be origin-symmetric infinitely
smooth convex bodies in R™, n > 4, so that for every £ € S71,

(6) (—A)*/25k (&) < (=A)*/25L(¢).

Then
vol,(K) < vol,(L).

On the other hand, for any a € [n—5,n—4) there are convex origin-symmetric
bodies K,L € R", n > 5 that satisfy (6) for every £ € S"~! but vol,(L) <
vol, (K).

Proof of the affirmative part: Let Sk(£) = vol,—1(K N&L), € € S, the
central section function defined in the Introduction. Then, as proved in [K1],

1

(M) Sk(¢) = W_—l)(llxll;?"“)A(é)-
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Extending Sk (&) to R™ as a homogeneous function of degree ~1 and using
the definition of fractional powers of the Laplacian we get

(~2)*/251(6) = o )(lezllfvll'"“) 6),

therefore
ey [ leli lellz" o
= (@n)" [s (el el el halg ™ e
- /S (el el @) al§ hallz ™Y ()6
= n(n~1) / (Il 2l 6)(~A)*/25 , (8)do.
S‘n—l

Here we have used Parseval’s formula on the sphere (see [K2, Lemma 3])
and (7).

By Lemma 2.3 with p = o and ¢ = n—a —2, (|z|;*||z||z")" is a non-negative
function on S™~!, therefore using the condition of the theorem and repeating
the above calculation in the opposite order, we get

| el el e < [ el halz .
gn- gnot

Then by Hoélder’s inequality and the polar formula for the volume (4),

1/n (n—1)/n
nvoln(K) < ( / uen,;"de) ( / ||enz"d6)
Sn—l Sﬂ—-l

= n(vol, (K))/™(vol, (L))™~D/",
which yields the statement of the positive part of the theorem.

Proof of the negative part: Let a € [n —5,n — 4). We need to construct two
convex origin-symmetric bodies K, L € R™, n > 5 such that for every £ € $"~!

(—A)*28k () < (—A)*>S1(8),

but
vol, (L) < vol,(K).

First let us prove the following Lemma.
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LEMMA 3.2: Let @ € [n—5,n — 4). There exists an infinitely smooth origin-
symmetric convex body L with positive curvature, so that

lzhiz? - lalo®
is not a positive definite distribution.

Proof: First assume that « € (n —5,n—4). Putg=n—a—2,s0 q € (2,3).
Our goal is to construct a body L so that there is a £ € S"~! satisfying

o0 L t2
®) | (Argalt) = Angal0) — A a0 )at <0

If we construct such a body L, the result of this lemma immediately follows
from Lemma 2.2 and the definition of fractional derivatives.
Consider the function

f(t) = (1 =2 = Ntt)t/ (n—o-1),

Let ay be the positive real root of the equation f(t) = 0. Define the body
L € R™ as follows:

n—1 1/2
L= {(xl,...,xn) € R™: z, € [-an,an] and (fo) < f(:z:n)},

i=1

which is a strictly convex infinitely differentiable body.
Take € to be the unit vector in the direction of the x,-axis. Then for t €
[03 an ],

f@®
ALga(t) = / / (t2 4 r2) /224y 4
Sn-1.J0
F(®)
= Cﬂ/ (2 4 r2)=a/2p =2y,
g

where Cp, = [S™71|, and for t > any we have AL ¢ o(t) = 0.
One can compute

Cr
Aresl0) =0T
and 5
1" _ o
Lep(0) = C"[n—a—3 n-—a—l]'

In order to estimate the integral (8), we split it into three parts: over
[0,bn], [bn,an] and [an,00), where by is the positive real root of the equation
1—t2 — Nt* = t9%1, Recall that ay was defined as the positive real root of the
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equation 1 — t2 — Nt* = 0. It is easy to check that ay ~ by ~ N~1/4 for large
N. Also, note that on [0,ay] we have f(t) > 0, and f(¢) > t if and only if
t € ]0,bn].

First consider the interval [0, bn]. For all ¢ from this interval we have t < f(t).
Then we can break the integral

@)
/ (t?' + ,,,2)—a/2,’,,n—2d,r =L +1
0

into two parts, where the first one can be estimated as follows:

t t tn—a——l
I = / (t2 + ,,.2)—01/27,n—2d,,. < / (T2)—a/27,,n—2d,r — ,
0 0 n—a-—1
and for the second one we will use the inequality
1
1+2)77<1—-yx+ %ﬁ, fory>0and0<z< 1.
Then
(@)
I =/ (t% + r2) =/ 224y
t
F(®) 2\ —a/2
:/ (1 + t_2) o 2dy
¢ r
f(t) at? a Q+1)t4
< _ o4 2y | U/ \n—a-—2
_/t (1 5 73 + 3 T4)r dr
T"_a—l a tzrn—a~3 %(% + 1) t4rn—a~5]f(t)
_[n—a—l 2n—a-—3 2 n—oa—>51t

_fn—a——l(t) o t2
Tn—a-1 2n—a-3

+ %(%2+ 1) ~ _lz — 5fn—a—5(t) + Ctn—a—l

fn_a_l(t) o tz n—a—3 —a—1
< — ty+Ccthe
“Tn—-a-—1 2n—a—3f ) +
_1-*=-Nt* o P

T n-—a-1 2n—a—3

(1 — 2 — Ntt)a=a=t 4 cgn—o?

for some constant C. The last inequality follows from f(t) > 0 on [0,by] and
a € (n—>5,n—4).
Using the inequality

1-2)">1-~z(1-z)""!, for0<y<landO<z<1,
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applied to the second term in the previous expression, we get

1-t22~-Nt2 o ¢

I < N X
I a1 2n—a-—3
- —‘3 n—o-—
x (1 — n__a_(l —¢2 = Nt4)T.—§_1(t2 + Nt4)) + on—e-1
n—a—1
— 2_N4 t2 t4 N6
L L. +C el
n—a-—1 2n—a-3 (1 —t2 — Nt4)7=a=1

Now using the estimates for /; and I; we get

bn £
[0 (Argalt) - Area(®) - 47,6005 )t
0

bn 42 a4 2 4 6
SCn/ t_q_l(l t2 — Nt _% t c t* + Nt
0

n—a-—1 n—a—3+ 1(1—t2——Nt4)#
1 o 2 t?
tn—a—l_ [ }_)dt
+C n—a—1+ n—-a—3+n—a—1 2
bn _Nt4 t4 Ntﬁ
=Cn/ t‘q‘l( +C + ; +Ct"‘°“1)dt.
0 n—a-1 (1 — 12 — Nt4)==a—T

Now one can estimate each term of the last integral separately. Since by ~
N1/ we get that

bn N4
/ t_q‘lidt ~ —C,NV4
o n—a-—1

for a positive constant C5.
For the second term, we change the variable of integration: u = N'/4t. Then

bn 4 6
t Nt
/ -1 TNC g
0 (1—t2 — Ntd)a=a=t

by N1/4 4pn7—1 6 n7—1/2
:NQ/4/ N u--1 wN~t 4 oSN _du
0 (1— N-1/22 — gt

1/4

b 4 6
< Nta-2/4 / et u’ tu Y
h 0 (1 - N-1/2y42 — y4)7=a=1

< CyN{a=2/4,

since by N'/4 — 1 as N — 00, and the integral

1 4 6
/ u—a1 (“#du
0

1-— uﬂﬁ
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converges both at 0 and 1.

And finally, the integral of the last term is small for large values of N, since
n—a—1 = ¢+1. From what we have obtained one can see that the integral over
[0,bn] will be negative for large values of N since the leading term is —Co N9/4,

Now consider the integral over [bn,an]. The expression

ALga(t) = ALga(0) — AL ¢ 4(0)t*/2

can be estimated from above by a constant C, not depending on N. Indeed,
Argalt) < Apga(0), A, ,(0) is a constant independent of N, and
t <ay =~ N~'4 <1 for N large enough. Therefore

o 1 " 2
/ t~9 (AL,E,a(t) — AL,E,Q(O) — LsE»a(O)_é_)dt
bn
anN anN _ b
< C/ t—1 4t < C by)~9ldt = 0NN
bN by (bn) (by)att

Recalling that any and by satisfy the equations
1—a —Nak =0 and 1-b% — Nby =47,
we conclude that
b = (a} — b})(1 + N(ak + b}))-
Therefore

aN C
C 1 1gt < ~CN™1/4,
/zm = (an +bn)(1+ N(a +b%))

Finally, the integral over [ay,o0) can be computed as follows:

00
/ g1 ( ~ Apga(0) - ’I',,g‘a(())%)dt ~ —D;N¥4 4 D,N(@-2/4
an
where D; > 0. Therefore, this integral is negative for N large enough.
Combining all the integrals one can see that for N large enough the desired
integral (8) is negative. This means that for some direction & € S™ ! the
function (||z||7* - |7 )" (€) is negative, if & € (n — 5,n — 4).
If o = n— 5, both sides of the equality in the statement of Lemma 2.2 vanish,
therefore we need to apply the argument from [GKS)] (see the proof of Theorem
1). Then

- -n < " ¢
(lallz* - ;™0 = € [ 4 (Angalt) = Angal0) - AL ¢al0) )t
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for a positive constant C. Considering the same body as before, we get that
(lz|[Z* - Jz|3™5)" (€) is also negative at some point &. n

Now we are ready to finish the proof of the negative part. Apply Lemma
3.2 to construct an infinitely smooth origin-symmetric body L with positive
curvature for which (||z||7" - |z|;*)(€) < 0 for some direction £. By Lemma
2.2, the function (||z||;! - |z|5*)" is continuous on the sphere $”~!, hence there
is a neighborhood of ¢ where it is negative.

Let

Q={0e5" " (lzlg" - lelz*)"(6) < 0}.

Choose a non-positive infinitely differentiable even function v supported on
Q). Extend v to a homogeneous function r~*~1v(f) of degree ~a — 1 on R™.
By (K5, Lemma 3.16], the Fourier transform of |z|;* 'v(x/|z|2) is equal to
lz]3 T g(x/|z|2) for some infinitely differentiable function g on S™~1.

Define a body K by
Iz = llellz ™ +elaly " g(a/|2)o)

for some small € so that the body K is convex (see, for example, [K5,
p. 96] for this standard perturbation argument). Multiply both sides by
ﬁlm]g and apply the Fourier transform:

(~8)°/281 = (A28, + ZE gl o(a/foly) < (~A)*251,

since v is non-positive.
On the other hand,

/Sn_l(”x“;1 . lxlga)/\(@(—A)o‘/zSKdﬁ
= /Sn_1<||m||,;1 Jel7)NO)(~A)/2Spdf
et [ (el el @e)ae

>/Sn_l(||1-”Zl . |‘T|2_a)A(9)(—A)a/2SLd9_

+

Repeating the argument from the proof of the affirmative part we get

volp(L) < volp,(K). 1
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Remarks: (i) The negative part is formulated only for ¢ € [n—5,n—4), because
we wanted this to work for n = 5. In fact, for bigger n one can take g € [0,n—4).
Also, the condition (1) can be written in terms of the Fourier transforms so that
no smoothness of the bodies is required.

(ii) In the case where ¢ = n—4 and n is an even integer, the result of Theorem
3.1 was proved in [K4] using an induction argument. The proof from [K4] cannot
be extended to other values of ¢ and n and does not produce any results in the
negative direction.

(iif) Shephard’s problem (see, for example, [K5, Section 8.4]) asks whether
convex origin-symmetric bodies with smaller projections necessarily have smaller
n-dimensional volume. As proved independently by Petty [P] and Schneider [S],
the answer to this problem is affirmative only in dimension n = 2, so one may
try to modify Shephard’s problem to guarantee the affirmative answer in all
dimensions. However, attempts to repeat the proof of Theorem 3.1 for Shep-
hard’s problem fail, since the section function Ag ¢, may not be sufficiently
differentiable.
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